### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION III

#### 841 Chestnut Building Philadelphia, Pennsylvania 19107

SUBJECT:

USX CLAIRTON

DATE:

Quench Water Issue

FROM:

Makeba A. Morris, Chief

Technical Assessment Section (3AT22)

TO:

David B. McGuigan, Chief

Air Enforcement Section (3AT11)

As requested in your memo, dated April 19, 1995, we have evaluated the ambient impacts of the quenching emissions originating from the USX Clairton Coke Works. As you requested we have used the dispersion model selected for the Allegheny County PM-10 SIP and quench tower input data specified in that model. The attached report is a summary of the evaluation of particulate emissions from the Clairton Coke Works' quench towers.

The evaluation indicates that, at the point of maximum concentration, the annual average PM-10 could be reduced by 0.88  $\mu g/m^3$  if river water only were to be used for coke quenching. Similarly, the maximum 24-hour concentration of PM-10 could be reduced by up to 5.98  $\mu g/m^3$  if river water only were to be used for coke quenching.

If you have questions about this evaluation please contact Denis Lohman.

attachment

## MODELING OF QUENCH TOWER PARTICULATE EMISSIONS USX CLAIRTON COKE WORKS

The only difficult part of the requested evaluation was to specify the mass emission rates to model. The key parameters analyzed in the sump (and river) samples are summarized in the attached tables. Subsequent evaluation was limited to the Total Solids parameter for several reasons:

- Total solids were the parameter reported of greatest magnitude;
- All other parameters should be represented as a fraction of total solids; and
- Total solids are most closely representative of PM-10 which was modeled for the Allegheny County SIP.

Through discussions with Tom Casey, who supervised the Allegheny County SIP modeling, it was determined that the quench tower emissions were calculated using the AP-42 factors for "Clean Water with baffles." (Note: The AP-42 defines "Clean Water" as clean make-up water as opposed to using process water for make-up.) The PM-10 emission factor in AP-42 is 0.03 kg/Mg (0.05 lb/ton). In researching the derivation of the AP-42 emission factor it was determined that particulate emissions were found to be related to total solids concentration by the equation:

$$E = 1.46 \times 10^{-4} (TS) + 0.43$$

where

E = emissions (kg/Mg)
TS = total solids concentration in the quench
water (mg//)

The mean total solids (TS) measured in the sump sampling program were used to calculate the particulate emissions factor for each of the quench tower sumps and for the river sample. For each sump the emissions difference between the sump TS and the river TS was calculated as follows:

| Source  | <u>Total Solids</u> | <u>kg/Mg</u> |
|---------|---------------------|--------------|
| River   | 211                 | 0.461        |
| Sump #3 | 491                 | 0.502        |
| Sump #5 | 412                 | 0.490        |
| Sump #7 | 491                 | 0.502        |
| Sump #B | 564                 | 0.512        |

<sup>&</sup>lt;sup>1</sup> J. Jeffrey, <u>Wet Coke Quench Tower Emission Factor</u> <u>Development, Dofasco, Ltd.</u>, EPA-600/X-85-340, U. S. Environmental Protection Agency, Research Triangle Park, NC, August 1982.

Because the calculated emissions are total particulate and to avoid the necessity of reestimating the process factor and to maintain consistency with the SIP demonstration, the emissions difference was prorated to the emissions rate used in the SIP demonstration to calculate a mass emission rate to model. This presumes that the PM-10 fraction from the river water would be the same as the PM-10 fraction from the sump. If, as expected, the river water would have a higher PM-10 fraction the emission rate modeled would be less. The resulting emission rates, representing the difference between quenching with river water and recycled water, are as follow:

| Quench Tower | PM-10 SIP<br>grams/sec | PM-10 <sub>Rvr</sub><br>grams/sec | Difference<br>grams/sec |
|--------------|------------------------|-----------------------------------|-------------------------|
| 1.           | 1.00                   | 0.918                             | 0.081                   |
| 3            | 0.99                   | 0.908                             | 0.081                   |
| 5            | 0.96                   | 0.905                             | 0.057                   |
| 7            | 1.20                   | 1.102                             | 0.098                   |
| В            | 0.91                   | 0.820                             | 0.092                   |

The emission rate differences were modeled with the ISCST2 model used for the PM-10 SIP demonstration. The source parameters for the quench towers, the meteorology, and the receptors were all used as used in the SIP demonstration.

The attached summary of results characterizes the estimate of PM-10 reduction that would be obtained by using only river water for coke quenching in place of using recycled water with river water used to replace evaporated losses. The maximum calculated annual improvement would be 0.88  $\mu g/m^3$ , which is 1.76 percent of the PM-10 annual NAAQS. The maximum calculated 24-hour improvement would be 5.98  $\mu g/m^3$ , which is 4 percent of the PM-10 24-hour NAAQS.

# ALLEGHENY COUNTY QUENCH SUMP SAMPLING RIVER WATER INTAKE (mg/l)

|          | Ammonia | Phenol     | CN <sub>S</sub> | TDS <sup>3</sup>       | TS <sup>4</sup> | SS <sup>5</sup> |
|----------|---------|------------|-----------------|------------------------|-----------------|-----------------|
| DER      | .130    | 0.00       |                 | NA <sup>6</sup>        | 190.00          | 34.00           |
|          | .140    | 0.00       |                 | 154.00                 | 204.00          | 50.00           |
|          | NA      | 0.00       |                 | NA                     | NA              | NA              |
|          | .090    | 0.00       |                 | 174.00                 | 204.00          | 30.00           |
|          | .090    | 0.00       |                 | 160.00                 | 162.00          | 2.00            |
| US STEEL | .250    | .002       |                 | 120.00                 | 240.00          | 66.00           |
|          | .070    | .002       |                 | 150.00                 | 190.00          | 13.00           |
|          | .025    | .012       |                 | 180.00                 | 290.00          | 130.00          |
| AVG DER  | .113    | 0.00       |                 | 162.67                 | 190.00          | 29.00           |
| AVG USX  | .115    | .005       |                 | <b>1</b> 50 0 <b>0</b> | 240.00          | 69.67           |
| AVG ALL  | .114    | .002       |                 | 150.33                 | 211.43          | 46.43           |
|          | SUM     | P FOR BATT | ERIES 1-3,      | 7-9 (mg/               | <i>(</i> )      |                 |
|          | Ammonia | Phenol     | CN              | TDS                    | TS              | SS              |
| DER      | .290    | .064       | .070            | 376.00                 | 558.00          | 182.00          |
|          | .730    | .113       | .073            | 336.00                 | 470.00          | 134.00          |
|          | .260    | .145       | .075            | 314.00                 | 558.00          | 244.00          |
|          | .260    | .060       | .070            | 360.00                 | 552.00          | 192.00          |
|          | .230    | .075       | .085            | 342.00                 | 390.00          | 48.00           |
| US STEEL | .360    | .120       | .009            | 390.00                 | 430.00          | 91.00           |
|          | .390    | .120       | .005            | 330.00                 | 550.00          | 140.00          |
|          | .025    | .064       | .0025           | 330.00                 | 420.00          | 51.00           |
| AVG DER  | .354    | .091       | .0746           | 345.60                 | 505.60          | 160.00          |
| AVG USX  | .258    | .101       | .0055           | 350.00                 | 466.67          | 94.00           |
| AVG ALL  | .318    | .095       | .0488           | 347.25                 | 491.00          | 135.25          |

<sup>&</sup>lt;sup>2</sup>Cyanide

<sup>&</sup>lt;sup>3</sup>Total Dissolved Solids

<sup>&#</sup>x27;Total Solids

<sup>&</sup>lt;sup>5</sup>Total Suspended Solids

<sup>&</sup>lt;sup>6</sup>Not Analyzed

#### ALLEGHENY COUNTY QUENCH SUMP SAMPLING SUMP FOR BATTERIES 13-15 (mg//)

|                    | Ammonia                         | Phenol   | CN      | TDS      | TS     | SS     |
|--------------------|---------------------------------|----------|---------|----------|--------|--------|
| DER                | .330                            | .010     | NA      | 340.00   | 400.00 | 60.00  |
| Sales sales say to | .290                            | .035     | .080    | 306.00   | 352.00 | 46.00  |
|                    | .320                            | .023     | .155    | 292.00   | 364.00 | 72.00  |
|                    | .150                            | .050     | .150    | 394.00   | 520.00 | 126.00 |
|                    | .310                            | .083     | .200    | 318.00   | 362.00 | 44.00  |
| US STEEL           | .420                            | .024     | .021    | 340.00   | 370.00 | 54.00  |
|                    | .500                            | .028     | .005    | 280.00   | 410.00 | 58.00  |
|                    | .110                            | .015     | .017    | 380.00   | 520.00 | 92.00  |
|                    |                                 |          |         |          |        |        |
| AVG DER            | .280                            | .040     | .146    | 330.00   | 399.60 | 69.60  |
| AVG USX            | .343                            | .022     | .014    | 333.33   | 433.33 | 68.00  |
|                    |                                 |          |         |          |        |        |
| AVG ALL            | .304                            | .034     | .090    | 331.25   | 412.25 | 69.0   |
|                    | SUMP FOR BATTERIES 19-20 (mg//) |          |         |          |        |        |
|                    | Ammonia                         | Phenol   | CN      | TDS      | TS     | SS     |
| DER                | NA                              | .144     | .125    | NA       | NA     | NA     |
|                    | .650                            | .215     | .110    | 342.00   | 554.00 | 212.00 |
|                    | .430                            | .063     | .130    | 310.00   | 454.00 | 144.00 |
|                    | .380                            | .215     | .300    | 438.00   | 508.00 | 70.00  |
|                    | .570                            | .288     | .280    | 324.00   | 498.00 | 174.00 |
| US STEEL           | .580                            | .140     | .0025   | 340.00   | 420.00 | 58.00  |
| ****               | .470                            | .250     | .005    | 310.00   | 520.00 | 140.00 |
|                    | .025                            | .200     | .025    | 390.00   | 480.00 | 72.00  |
|                    |                                 |          |         |          |        | ,      |
| AVG DER            | .508                            | .185     | .189    | 353.50   | 503.50 | 150.00 |
| AVG USX            | .358                            | .197     | .011    | 346.67   | 473.33 | 90.00  |
|                    |                                 |          |         |          |        |        |
| AVG ALL            | .444                            | .189     | .122    | 350.57   | 490.57 | 124.29 |
|                    |                                 | SUMP FOR | BATTERY | B (mg//) |        |        |
|                    | Ammonia                         | Phenol   | CN      | TDS      | TS     | SS     |
| DER                | .650                            | .005     | .155    | 404.00   | 546.00 | 142.00 |
|                    | .630                            | .083     | .108    | 440.00   | 510.00 | 70.00  |
|                    | .670                            | .015     | .155    | 374.00   | 828.00 | 454.00 |
|                    | .640                            | .065     | .250    | 450.00   | 514.00 | 64.00  |
|                    | .510                            | .005     | .205    | 344.00   | 512.00 | 168.00 |
| US STEEL           | .690                            | .240     | .013    | 440.00   | 490.00 | 98.00  |
|                    | .850                            | .098     | .007    | 410.00   | 610.00 | 98.00  |
|                    | .120                            | .089     | .022    | 420.00   | 500.00 | 57.00  |
| AVC DED            | 620                             | N2 E     | 175     | 400 40   | E03 00 | 170 60 |
| AVG DER            | .620                            | .035     | .175    | 402.40   | 582.00 | 179.60 |
| AVG USX            | .553                            | .142     | .014    | 423.33   | 533.33 | 84.33  |
| AVG ALL            | .595                            | .075     | .114    | 410.25   | 563.75 | 143.88 |
|                    |                                 |          |         |          |        |        |